В МФТИ создали 2D-материал для гибкой оптоэлектроники

В МФТИ создали 2D-материал для гибкой оптоэлектроники

big-204965-1.jpg

Новый материал из разряда органических 2D-полимеров на основе особых молекул разработали ученые МФТИ и ИБХФ РАН. Наноразмерные поры в этом материале-монослое можно легко контролировать с помощью дизайна молекул, обеспечивая уникальное сочетание стабильности, упругости и ширины запрещенной зоны полупроводника. Потенциальное применение 2D-полимеров — изготовление элементов гибкой и управляемой оптоэлектроники. Результаты проекта опубликованы в международном научном журнале FlatChem.

В последние десятилетия создан ряд новых нанопористых материалов, которые могут применяться в инновационных отраслях индустрии: адсорбции газов, гетерогенном катализе, накоплении энергии и т. д. Размеры пор в них варьируются от 1 до 100 нанометров, а специфические свойства таких материалов — сенсорные, адсорбционные, каталитические и другие — связаны именно с наличием нанопор.

Есть разные форматы создания таких материалов: так называемые металлоорганические каркасы, сопряженные микропористые полимеры и т. д. Ковалентные каркасы имеют уникальную структуру за счет способа синтеза, который позволяет создать однородную пористость. Еще одним преимуществом является то, что такую структуру можно синтезировать в 2D- и 3D-микропористых сетях. Кроме того, они химически и термически стабильны.

Большой выбор мономеров позволяет регулировать размер пор и желаемые свойства материала. В настоящее время подобные пористые структуры используются для разделения различных газов, таких как углекислый газ и азот, ацетилен и этилен, этан и метан, этилен и метан и т. д.

Ученые МФТИ обнаружили, что подобные 2D-полимеры могут также применяться в сфере современной оптоэлектроники благодаря своим уникальным свойствам. Они изучили с помощью расчетов и предложили два стабильных монослоя на основе органических молекул F4-TCNQ.

«Мы проанализировали две возможные для них реакции: реакцию тримеризации с получением монослоя ЦТФ и реакцию образования вторичного амина с получением монослоя САФ. Все реакции показывают энергетическую выгодность конечного состояния. Стабильность монослоев SAF и CTF была подтверждена методом ab initio молекулярно-динамического моделирования при постоянных температурах 400, 600 и 800 K. Более того, быстрый нагрев до 3000 K с шагом температуры 2,15 K/фс не показал существенных изменений в атомной структуре», — рассказал один из авторов исследования, д. ф-м. н, доцент кафедры химической физики функциональных материалов МФТИ Дмитрий Квашнин.

Расчеты электронных свойств 2D-материала показали полупроводниковое поведение монослоя с шириной запрещенной зоны около 1,5 эВ.

Данные, полученные в ходе исследования, показали перспективность применения предложенных монослоев в области гибких электронных и оптоэлектронных устройств.

Узнавайте первыми главные энергетические новости и актуальную информацию о важных событиях дня в России и мире.

Подписывайтесь на наш Telegram-канал

"ГИС-Профи. Информационное сопровождение предприятий энергетической отрасли"