"СКБ ЭП". Выбор универсального прибора для контроля трансформаторов, электрических машин и коммутационного электрооборудования
В условиях современного рынка, когда каждое предприятие старается выйти на новый уровень рентабельности и минимизировать издержки, вопрос о повышении эффективности работы стоит достаточно остро. Данная проблема особенно актуальна для небольших подрядных ремонтных и монтажных организаций, имеющих зачастую небольшой штат высококвалифицированного персонала. Немаловажным фактором для этих организаций является правильный выбор комплекта приборов для контроля параметров электрооборудования и диагностирования неисправных его узлов.
Одним из самых распространенных и простых методов оценки состояния узлов перечисленного выше электрооборудования является измерение в них электрического сопротивления постоянному току. К сожалению, для каждого типа электрооборудования (трансформаторы, электрические машины и коммутационное электрооборудование) требуются свои средства полноценной диагностики, но в случае с измерением электрического сопротивления постоянному току можно воспользоваться существующими универсальными приборами, применение которых значительно сэкономит ресурсы компании по сравнению с приобретением целого диагностического комплекса под каждый вид электрооборудования. Рассмотрим более подробно возможности приборов и виды измерений, которые необходимо произвести на разных типах электрооборудования.
Трансформаторы.
При контроле трансформаторов проверяют разброс сопротивлений на всех одноименных отводах разных фаз. Если разброс не превышает 2%, то согласно «РД 34.45-51.300.97. Объем и нормы испытаний электрооборудования» (6-е изд. – М.: НЦ ЭНАС, 2000) это является нормой. При измерении фазных сопротивлений обмоток с нулевым выводом отклонение сопротивления одной из фаз более чем на 2% указывает на неисправности по этой фазе.
Линейные сопротивления измеряются, когда у обмотки нет нулевого вывода. Рекомендуется выполнить их пересчет в фазные сопротивления по известным формулам. Покажем полезность этого на простом примере. Допустим, получены следующие значения сопротивлений трехфазной обмотки со схемой «звезда» без нулевого вывода: RAB=2,04 Ом; RBC= 2,04 Ом; RCA=2,0 Ом. То есть, максимальный разброс по сопротивлениям обмоток не превышает 2%, следовательно, обмотки считаются исправными. Пересчет в фазные сопротивления дает: RAО=1,0 Ом; RBО= 1,04 Ом; RCО=1,0 Ом. Пересчитанные данные, во-первых, локализуют неблагополучную фазу, а, во-вторых, обнаруживают увеличенное на 4% ее сопротивление, что уже указывает на наличие в ней неисправности.
Кроме определения разброса сопротивлений обмоток по разным фазам необходимо еще сопоставлять измеренные значения сопротивлений с паспортными значениями, либо со значениями, полученными при пуско-наладочных испытаниях трансформатора. Не рекомендуется сопоставлять измеренные сопротивления только с результатами предыдущих измерений. В этом случае не видно постепенного из года в год увеличения сопротивления обмотки, свидетельствующее о неуклонной деградации каких-то соединений либо элементов в электрической цепи трансформатора.
Для проведения такого сопоставления необходимо значение температуры измеряемой обмотки, за которую принимается температура верхних слоев масла трансформатора. Штатных термометров в трансформаторах зачастую нет, поэтому необходим термометр, а также возможность внесения значений измеренной и паспортной температуры в измерительный прибор. Приведение к паспортной температуре выполнится автоматически, если в приборе имеется такая функция. Также автоматически выполнится расчет относительных отклонений сопротивлений (разброса) между одноименными отводами и пересчет линейных сопротивлений в фазные. Если же указанные функции отсутствуют, то ручной пересчет, учитывая 10-20 отводов обмотки по каждой фазе, займет много времени и не исключает ошибок.
Кроме определения разброса сопротивлений обмоток по разным фазам необходимо еще сопоставлять измеренные значения сопротивлений с паспортными значениями, либо со значениями, полученными при пусконаладочных испытаниях трансформатора. Это необходимо делать для контроля сопротивления обмотки, увеличение которого свидетельствует о неуклонной деградации каких-то соединений либо элементов в электрической цепи трансформатора. Для проведения такого сопоставления необходимо значение температуры измеряемой обмотки, за которую принимается температура верхних слоев масла трансформатора. Штатных термометров в трансформаторах зачастую нет, поэтому необходим термометр, а также возможность внесения значений измеренной и паспортной температуры в измерительный прибор. В приборе МИКО-2.3 приведение к паспортной температуре выполнится автоматически, также автоматически выполнится расчет относительных отклонений сопротивлений (разброса) между одноименными отводами и пересчет линейных сопротивлений в фазные.
При капитальном ремонте, либо при обнаружении дефекта внутреннего контакта, когда вскрывается бак трансформатора или контактора, можно непосредственно (без сопротивления обмотки) измерить переходные сопротивления разъемных и неразъемных соединений на больших измерительных токах и получить точное представление об их состоянии. При вскрытом баке контактора доступны для проверки целостности токоограничивающие резисторы устройства РПН и переходные сопротивления контактора и избирателя.
В трансформаторах тока, встраиваемых в силовые трансформаторы, шинных, опорных, проходных и др. трансформаторах тока, устанавливаемых в распределительных устройствах, измеряется сопротивление вторичных обмоток и сопротивление их нагрузочных резисторов.
Электрические машины.
В электрических машинах переменного тока (синхронных генераторах и двигателях, асинхронных двигателях), как и в трансформаторах, измеряется сопротивление 3-х фазной обмотки статора: фазное – при всех выведенных наружу концах обмотки; линейное – при внутреннем соединении обмоток в схему «звезда» или «треугольник». И по тем же формулам пересчитываются линейные сопротивления в фазные, рассчитывается разброс сопротивлений между фазами и измеренное сопротивление приводится к паспортной температуре.
В роторах синхронных электромашин измеряется сопротивление обмотки возбуждения. А если это ротор с явными полюсами, то еще измеряется сопротивление каждого полюса в отдельности или попарно и переходного контакта между ними. В асинхронных двигателях с фазным ротором измеряются линейные сопротивления обмотки.
В электрических машинах постоянного тока измеряются сопротивление обмотки возбуждения на статоре, обмотки ротора между коллекторными пластинами, сопротивление реостатов и пускорегулирующих резисторов.
Для подсоединения измерительных кабелей к выводом обмоток роторов, выполненных в виде колец, универсальные зажимы (струбцины, «крокодилы») не годятся и нужны специальные зажимы в виде хомутов с винтовой затяжкой. А к коллекторным пластинам наиболее удобно присоединяться зажимами со сдвоенными (потенциальный и токовый) подпружиненными контактами игольчатого вида.
Коммутационное электрооборудование.
В коммутационном электрооборудовании измерению под-лежат следующие сопротивления:
- переходные сопротивления контактов выключателей, разъединителей, отделителей и короткозамыкателей;
- переходные сопротивления разъемных соединений оборудования комплексных распределительных устройств;
- переходные сопротивления болтовых соединений проводов высоковольтных линий, шин и токопроводов на ОРУ;
- сопротивления обмоток электромагнитов приводов и встроенных трансформаторов тока;
- сопротивление шунтирующих резисторов дугогасительных устройств масляных баковых выключателей типа МКП и У, сопротивление делителей напряжения и шунтирующих резисторов воздушных выключателей.
При измерении переходных сопротивлений контактов и соединений возникают вопросы о силе измерительного тока, так как при окисленных контактах результат измерения будет завышенным и определяться силой тока. Для исключения ошибочных измерений в международных стандартах МЭК 56 и ANSI C37.09 регламентирована сила измерительного тока от минимально допустимой (50-100А) до номинального тока выключателя. Для российских выключателей единого стандарта до сих пор нет, хотя отдельные производители выключателей нормируют силу тока при измерении. Очевидно, по этой причине во многих энергосистемах используют малогабаритные и дешевые микроомметры на токи 2-10 А, рискуя получить завышенные значения сопротивления, для устранения которых придется выполнять совершенно не нужные ремонты выключателей. Особенно это относится к баковым выключателям типа МКП и У, контактная цепь которых содержит до восьми последовательно соединенных дугогасительных контактов и два главных, значит и более уязвима для окисления, а трудоемкость ремонта выше из-за большого количества масла в баке.
Диапазон измеряемых сопротивлений для перечисленного электрооборудования очень широкий и лежит в пределах от 10-5 до 105Ом, а диапазон силы измерительных токов – от 10-3 до 600А и более. Поэтому на рынке приборов представлены в основном приборы узкоспециализированные с меньшими диапазонами: микроомметры - для измерения переходного сопротивления контактов и соединений, и миллиомметры – для измерения сопротивлений обмоток трансформаторов, электродвигателей и т.п. Кроме того, для измерения температуры обмоток имеются различные типы термометров, а для контроля шунтирующих резисторов дугогасительных контактов – килоомметры.
Но как следует из обзора электрооборудования, даже для контроля только трансформатора, или только выключателя требуется и микроомметр, и миллиомметр, и термометр, а зачастую, и килоомметр. То есть, придется пользоваться поочередно тремя - четырьмя приборами, что не всегда удобно. Увеличение числа приборов увеличивает не только общую стоимость комплекта, но и его массу, что усложняет транспортировку оборудования на далеко расположенные объекты. К тому же, при анализе предлагаемых специализированных приборов оказывается, что:
- часть из них не подходят по допустимой погрешности измерения в рабочих условиях;
- большинство приборов не имеют функций пересчета измеренных сопротивлений, а единичные имеют только функцию приведения к паспортной температуре;
- микроомметры на большие токи имеют большую массу и габариты.
Экономически выгодной альтернативой является использование универсальных приборов, позволяющих измерять все вышеперечисленные параметры. Их стоимость и масса будут меньше, чем у комплекта специализированных приборов с тем же набором функций. Приведенная ниже таблица технических характеристик (информация взята с сайтов производителей этих приборов) двух универсальных и трех специализированных приборов наглядно демонстрирует преимущества универсального прибора №1.
Во всех рассмотренных выше типах электрооборудования применение микромилликилоомметра МИКО-2.3 является экономически эффективным. Прибор позволяет не только измерять все вышеперечисленные параметры, но также будет стоить и весить значительно меньше, чем комплекс средств диагностики. По техническим характеристикам МИКО-2.3 значительно опережает существующие специализированные приборы (при сравнении информация бралась с сайтов производителей приборов). Благодаря нечувствительности к наведенному напряжению МИКО-2.3 можно подключить к вводам выключателя. После чего посредством домкрата установить траверсу выключателя в положение, когда дугогасительные контакты разомкнуты, а главные – еще замкнуты, и считать с дисплея сопротивление одного или двух последовательно соединенных шунтирующих резисторов. Очевидно, что этот способ гораздо менее трудоемкий, чем при использовании обычных килоомметров.
Сравнительная таблица характеристик универсальных и специализированных измерительных приборов
* Цена с учетом рекомендуемой комплектации и НДС (действительны на период 22.07.2014)