Авторы: Пичугин В.Н., Солдатов А.А., Тюрюшова Е.Р.
Источник: Программные продукты и системы, 2024, 37(2)
Разработка нейросетевого метода и программного инструмента оценки потерь электроэнергии
Цель исследования реализация программного инструмента обработки и предсказания данных, полученных с помощью радиоприемного цифрового модуля для обнаружения, идентификации и удаленной передачи данных на базе фрактальных антенн.
Программный инструмент разработан в интегрированной среде Visual Studio 2019 с использованием оригинальных библиотек на платформе Windows. Все свойства объектов доступны для изменения, интерфейсная форма и визуальные компоненты создаются в процессе как проектирования, так и компиляции. Для программной оценки недоучета электрической энергии по показаниям использованы статистический метод и метод искусственной нейронной сети многослойного персептрона.
Подобные методы исследования больших данных, основанные на анализе показаний счетчиков электроэнергии, которые формируются в результате ежемесячного сбора, позволяют судить о их несоответствиях нормам, характеристике и типе недоучета, размерах потерь и т.д.
Основным результатом является новый нейросетевой метод выявления данных о потерях электроэнергии, позволяющий обнаруживать неправильные коммерческие данные показаний электросчетчиков.
Разработанный программный инструмент применяется для цифрового модуля передачи показаний приборов энергопотребления и использует умные алгоритмы метода для учета несоответствий данных о передаваемой электроэнергии на цифровых подстанциях.