Метки: Технологии | Проекты | Решения
Источник: информация из открытых интернет-источников
Неравномерное размещение ветряков повысило эффективность электростанции на 30%
Физики из Бельгии и США построили миниатюрную модель ветряной электростанции, состоящей из ста ветряков, рассмотрели 56 различных расстановок генераторов и выяснили, при какой из них мощность станции максимальна. Оказалось, что меньше всего энергии теряется в том случае, если ряды ветряков сильно неравномерно — в этом случае средняя мощность ветряка станции составляла около 60 процентов от мощности одиночного ветряка. Это примерно на 30 процентов больше, чем при равномерной расстановке ветряков. Статья опубликована в Physical Review Fluids, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.
Чтобы увеличить количество электроэнергии, извлекаемой из ветра, и уменьшить стоимость постройки, ветряки часто объединяют в ветряные электростанции (также их называют фермами). Крупные ветряные электростанции содержат сотни турбин (а крупнейшие — тысячи), выстроенных в несколько рядов. К сожалению, близко расположенные ветряки поглощают импульс ветра, создают турбулентности и мешают друг другу — в зависимости от плотности расположения ветрогенераторов, погодных условий и режима эксплуатации, средняя мощность ветряка в ферме может достигать порой только 50 процентов от мощности отдельно стоящего генератора. Станции из-за этого теряют около половины доступной энергии, поэтому физики активно исследуют, как потоки воздуха распространяются внутри фермы, и пытаются уменьшить потери.
К сожалению, существующие аналитические модели только в общих чертах ухватывают динамику происходящих процессов, а численное моделирование требует слишком много ресурсов ввиду сложности уравнений гидродинамики. Тем не менее, физики смогли вывести несколько общих закономерностей, позволяющих повысить мощность фермы. Во-первых, ученые предложили увеличить интервал между ветряками, ориентированными по направлению ветра, — например, разместить их в шахматном порядке. Во-вторых, более аккуратные исследования показали, что небольшие отклонения от идеально шахматного порядка позволяют повысить мощность станции еще на несколько процентов. В третьих, в больших фермах, состоящих из нескольких рядов генераторов, важную роль играет вертикальный перенос энергии между потоками воздуха, которые направлены на турбину или пролегают около поверхности земли. Как бы то ни было, универсального правила размещения турбин, позволяющего извлечь из ветра максимум энергии, до сих пор не существует, и физики продолжают искать оптимальную конфигурацию.
Группа ученых под руководством Юлиана Боссёйт (Juliaan Bossuyt) экспериментально изучила, как расположение ветряков сказывается на мощности ветряной электростанции, и неожиданно обнаружила, что наибольшей эффективности можно добиться, размещая генераторы через неравномерные интервалы. Для этого физики построили макет миниатюрной ветряной фермы из ста ветряков, собранных в двадцать рядов (пять ветряков в каждом ряду). Численно смоделировать такую систему в настоящее время невозможно. Характерный диаметр каждого ветряка D находился в диапазоне от 2,5 до 7 сантиметров, а расстояние между рядами и ветряками в ряду составляло примерно 5—7D.
Давление воздуха, который обдувал мини-ветряки, было нормальным, поэтому физикам пришлось скорректировать форму ветряков, чтобы приблизить число Рейнольдса модели к числу Рейнольдса в реальной задаче. Для этого исследователи заменили турбину ветряка пористым диском, который замедляет проходящий поток воздуха. В результате число Рейнольдса для наблюдаемых потоков находилось на уровне Re ~ 104, что согласуется с числами для настоящих ветряных ферм. Авторы статьи отмечают, что потоки воздуха вблизи пористого диска отличаются от потоков вокруг турбины, однако на больших расстояниях (порядка нескольких диаметров ветряка) все такие особенности перекрываются внешними турбулентностями. Следовательно, система с пористыми дисками должна хорошо моделировать реальные электростанции в соотношении 1:3000.
Используя построенную механическую модель, ученые смоделировали 56 различных конфигураций ветряков и сравнили их энергетические эффективности. В основном конфигурации разбивались на три больших класса. В первом классе расстояние между рядами и ветряками в одном ряду поддерживалось постоянным. Во втором классе расстояние между соседними рядами было слегка неравномерным и составляло либо 3,5D, либо 10,5D. В третьем классе неравномерность увеличивалась еще сильнее: расстояние между рядами менялось от 1,5D до 12,5D. Во всех трех случаях ученые размещали ветряки в шахматном «правильном» порядке. Кроме того, для неравномерных схем физики рассматривали еще несколько расстановок с переменным сдвигом между ветряками в соседних рядах.
В результате исследователи обнаружили, что наибольшей эффективностью обладает сильно неравномерная схема с шахматным порядком турбин. Несмотря на то, что в рядах, которые закрывали передние близко расположенные ряды, средняя мощность турбин падала до 10–20 процентов (от мощности одиночной турбины), в остальных рядах она была близка к ста процентам, а иногда даже превышала мощность одиночной турбины. Суммарная мощность фермы при этом достигала 60 процентов. В слабо неравномерной схеме эти эффекты проявлялись более слабо, а в равномерной схеме потери энергии были еще больше, а потому средняя мощность ее турбин не превышала 45 процентов. Это согласуется с соотношениями для настоящих ветряных электростанций, которые теряют почти половину доступной энергии.
Тем не менее, авторы статьи отмечают, что неравномерная схема размещения ветряков имеет свои недостатки. В частности, при некоторых направлениях ветра эффективность фермы сильно падает, и схема с равномерным размещением ветряков становится более выгодной. Поэтому в будущем ученые собираются более детально исследовать взаимодействие потоков воздуха в больших ветряных фермах с тесно расположенными ветряками.
С каждым годом ветряные электростанции производят все больше и больше энергии. Например, в октябре 2017 года компании Statoil и Masdar запустили первую в мире плавучую ветряную электростанцию Hywind, мощность которой составляла около 30 мегаватт, а уже в сентябре 2018 компания Ørsted открыла аналогичную электростанцию мощностью более 650 мегаватт. Этого достаточно, чтобы обеспечить энергией почти 600 тысяч домов. Более того, ветряные электростанции так выгодны, что некоторые компании полностью отказываются от других источников энергии — в частности, в октябре этого года компания ScottishPower продала все свои тепловые электростанции, работающие на угле и газе.
Впрочем, физики стараются повысить эффективность не только ветряных электростанций, но и станций, использующих другие источники энергии. Например, в сентябре этого года китайские физики разработали «линзу» из метаматериала, которая концентрирует энергию океанских волн за счет их интерференции. Построенные прототипы усиливали амплитуду колебаний поверхности воды до трех раз и практически не создавали отраженных волн. В будущем ученые собираются использовать свою разработку, чтобы увеличить эффективность волновых электростанций.